

Feb 19-8:47 AM

Class QZ 27
Given
$$f(x) = \int_{1}^{\sqrt{x}} \cos t^{2} dt$$

1) find $f(1) = \int_{1}^{\sqrt{x}} \cos t^{2} dt = [0]$
2) find $f'(2)$
 $= \cos(\sqrt{x})^{2} \cdot \frac{1}{2\sqrt{x}} - \cos^{2} \cdot 0$
 $= \frac{\cos x}{2\sqrt{x}}$

1) Draw the region bounded by $y=\sqrt{x}$, y=1, and x=4. $x \rightarrow y=1$ x=12) find its area. $A = \int_{1}^{4} [J\bar{x} - 1] dx = \left(\frac{\chi^{3/2}}{3/2}\right)^{3/2}$ $=\left(\frac{2x\sqrt{x}}{3}-\frac{3}{3}x\right)\Big|_{1}^{4}=\frac{1}{3}\left[ex\sqrt{x}-3x\right]\Big|_$ 2.4JF-3.4--2.1JI+3.7] $=\frac{1}{3}\left[16-12-2+3\right]=\frac{5}{3}$ 3) find the volume if we notate it by x-axis y=5x x=4 R=Jx r=1 $\pi \left[R^2 - r^2 \right] dx$ $= \int_{1}^{4} \pi \left[\chi - 1 \right] d\chi = \pi \left[\frac{\chi^2}{2} - \chi \right] \Big|_{1}^{1}$ $=\pi\left[8-4-\frac{1}{2}+1\right]$ · 元〔5-1〕= 元 4.5 = 1.5元〕 17

Jun 2-9:07 AM

1) Draw the region bounded by
$$y=Jx$$
, $x=1$,
 $x=4$, and $y=0$.
2) Sind its area. $A = \int_{1}^{4} [Jx-0] dx = \frac{x^{3}e}{3/e} |_{1}^{4} = \frac{2}{3}xJx} |_{1}^{4}$
3) Set-up the integral to Sind the Volume if
rotate the region by
a) $y=-2$
 $Jx = \int_{1}^{4} [Jx-0] dx = \frac{x^{3}e}{3/e} |_{1}^{4} = \frac{2}{3}xJx} |_{1}^{4}$
b) $y=5$.
 $\int_{1}^{4} Jx = \frac{1}{2} \int_{1}^{4} Jx$

Jun 2-9:20 AM

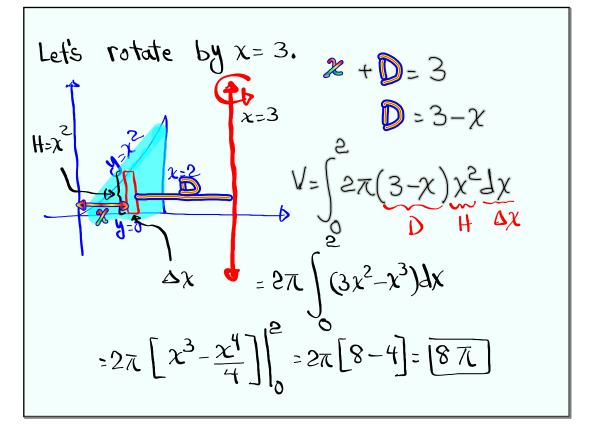
what do we do when ref. rectangle is Parallel to the axis of revolution? use cylindrical Shell Method V= Jan DHJX Height of Ref. Rect Rect Distance from A.O.R. V= [ex DW dy width of Ref. Rect.

Jun 2-9:35 AM

Rotate the region bounded by
$$y=x^2$$
,
 $y=0$, and $x=2$ by the y-axis.

 $y=0$, and $x=2$ by the y-axis.

 $D=x$
 $D=x$
 $D=x$
 $T=x$
 $T=x$



Jun 2-9:51 AM

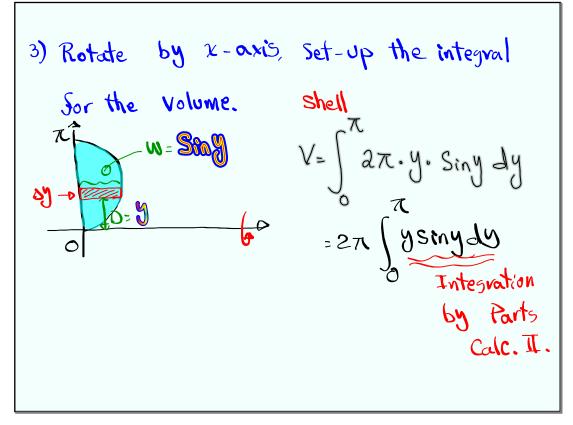
1) Draw the region bounded by
$$y = Sin x$$
,
 $\chi = \frac{\pi}{4}$, $\chi = \frac{3\pi}{4}$, and $y = 0$.
 $\sqrt{\frac{\pi}{4}} = \frac{\pi}{2}$, $\sqrt{\frac{3\pi}{4}} = \frac{3\pi}{4}$, $\sqrt{\frac{3\pi}{4}} = \frac{3\pi}{4}$, $\sqrt{\frac{3\pi}{4}} = \frac{3\pi}{4}$, $\sqrt{\frac{3\pi}{4}} = \frac{3\pi}{4}$, $\sqrt{\frac{3\pi}{4}} = -\frac{3\pi}{4}$, $\sqrt{\frac{3\pi}{4}} = -\frac{3\pi}{2}$, $\sqrt{\frac{3\pi}{4}} = -\frac{3\pi}{4}$, $\sqrt{\frac{3\pi}{4}} = -\frac{3$

3) Set-up the integral only to find the Volume is we rotate the enclosed region by c) χ= a) y=-2 washer R=2958 () y=-2 r=& 374 $V = \int_{\frac{\pi}{2}} \pi \left[(2 + \sin \chi)^2 - 2^2 \right] d\chi$ Δx D=X+R H=SinX b) y=2 27 (X+T) Sinxdy R.2 r+Sinx=2 r=2-Sinx d) x= T r= 2-Sinx Sinx H=Sm ٧÷ ð (2-Siny 37 えら $\chi + D = \pi$ $D = \pi - \chi$ $2\pi(\pi-x)$ ·Sinx dx ٧÷

Jun 2-10:05 AM

1) Draw the region bounded by y-axis
and
$$\chi = \sin y$$
 in QI.
 $y=0 \rightarrow \chi=0$
 $y=\frac{\pi}{2} \rightarrow \chi=1$
 $y=\pi \rightarrow \chi=0$
2) find its area. $A = \int_{0}^{\pi} \sin y \, dy = -\cos y \Big|_{0}^{\pi} = [2]$
3) Rotate it by Y-axis, find the volume.
Disk π
 $V = \int_{0}^{\pi} \pi [\sin y]^{2} \, dy = \pi \int_{0}^{\pi} \sin^{2} y \, dy$
 $(\cos 2A = 2\cos^{2}A - 1)$
 $(\sin 2A = 2\cos^{2}A - 1)$
 $\sin^{2}A = \frac{1-\cos^{2}A}{2}$
 $= \frac{\pi}{2} \Big[(y - \frac{1}{2}\sin^{2}y) \Big]_{0}^{\pi} \Big]$
 $= \frac{\pi}{2} [\pi - 0] = \left[\frac{\pi^{2}}{2} \right]$

Jun 2-10:24 AM

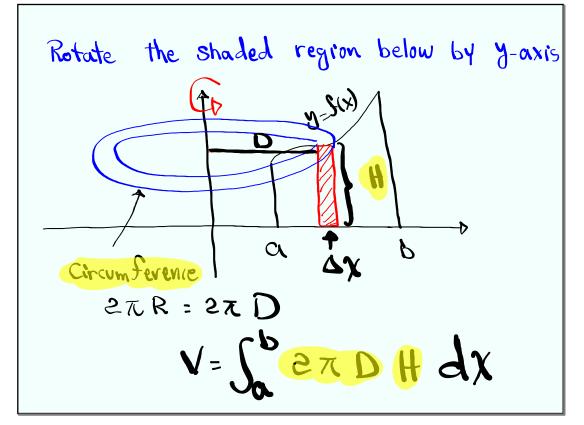


Jun 2-10:38 AM

1) Draw the region bounded by

$$x = 2$$
 and $x = y^2 + 1$.
(2,1) $x = 2$ p $x = y^2 + 1$
(2,1) $x = 2$ p $x = y^2 + 1$
(2,1) $x = 2$ p $x = y^2 + 1$
(2,-1) PRight - Left
(2,-1) (2,-1

Jun 2-10:43 AM



Jun 2-10:56 AM

Rotate the region bounded by $\chi = 4y^2 - y^3$ and x=0 by x-axis. Set-up the integral for the Volume. shell ~ x=4y-y -X=0 D = 0 $W = 4y^2 - y^3$ 4 y² - y³ = 0 ∆Y--> y2(4-y)=0 <u>y=0 y=4</u> 0 (b)(4y²-y)Jy

Jun 2-11:02 AM